列印
穩拿基礎題類題
點擊數:675

單元03 基礎題類題

  1. 請問\({2^{20}}\)最接近下列哪一個選項?
    (1) 10,000 
    (2) 1,000,000 
    (3) 100,000,000 
    (4) 1,000,000,000 
    (5) 1,000,000,000,000
  1. (1) 若\(\frac{{{{({5^3})}^6} \times {2^8} \times {4^5}}}{{{{10}^3}}} = {10^x}\),則\(x = \)__________。
    (2) \({243^{\frac{1}{5}}} + {64^{\frac{2}{3}}} + {\left( {\frac{1}{{125}}} \right)^{ - \,\frac{1}{3}}} = \)__________。
    (3) 若\({\left( {\frac{2}{5}} \right)^x} = {\left( {\frac{5}{2}} \right)^{3x - 8}}\),則\(x = \)__________。
  1. 某個手機程式,每次點擊螢幕上的數\(a\)後,螢幕上的數會變成\({a^2}\)。當一開始時螢幕上的數\(b\)為正且連續點擊螢幕三次後,螢幕上的數接近\({625^3}\)。試問實數\(b\)最接近下列哪一個選項?(單選) (1) 7.3  (2) 11.2  (3) 15  (4) 17.8  (5) 25
  1. (1) \(\log \frac{7}{2} - 4\log \frac{3}{5} + 4\log 6 - \frac{1}{2}\log \frac{{49}}{4} = \)__________。
    (2) \({\log _8}16 + {\log _4}8\sqrt[3]{{16}} = \)__________。
  1. 已知\(k\)為正整數且\(k < \log 1024 < k + 1\),則\(k = \)__________。
  1. 若\({\log _2}5 = a\),\({\log _{25}}8 = \frac{1}{{ka}}\),則\(k = \)__________。
  1. 已知函數\(f(x) = {a^x}\),\(g(x) = {\log _a}x\),若\(g(3) = 7\),則\(f(21) = \)__________。
  1. 方程式\({\log _2}(x + 4) - \frac{1}{2}{\log _2}(x + 7) = 1\)之解為\(x = \)__________。
  1. 對任意實數\(x\)而言,\({\log _2}({x^2} + 2x + 9)\)的最小值為__________。
  1. 以下各數哪些為正?(多選)
    (1) \(\sqrt {\frac{1}{2}}  - \sqrt[3]{{\frac{1}{2}}}\)  (2) \({\log _{{\textstyle{1 \over 2}}}}3 + 1\)  (3) \({\log _{{\textstyle{1 \over 3}}}}2 + 1\)  (4) \({\log _{{\textstyle{1 \over 3}}}}\frac{1}{2} - 1\)  (5) \({\log _{{\textstyle{1 \over 2}}}}\frac{1}{3} - 1\)
  1. 所有滿足\({\log _{{\textstyle{1 \over 3}}}}({x^2} + 2x - 8) \ge - 3\)的\(x\)值之範圍為__________。
  1. 若直線\(y = 3\)與\(y = {\left( {\frac{1}{2}} \right)^x}\)、\(y = {\left( {\frac{1}{3}} \right)^x}\)、\(y = {2^x}\)、\(y = {3^x}\)的圖形分別交於\(A\)、\(B\)、\(C\)、\(D\)四點,則此四點的位置由左到右的順序為__________。
  1. 以下為常用對數表\({\log _{10}}x\)的一部分

03 13

請利用上表及內插法計算\(\log 5.936\)之值為__________。

  1. 已知\(\log x = - 4.5378\),求:
    (1) \(\log x\)之首數為__________,尾數為__________。
    (2) \(x\)在小數點後第__________位開始出現不為0的數字。
  1. 已知\(\log 2 = 0.3010\),\(\log 3 = 0.4771\),\(\log 7 = 0.8451\),求:
    (1) \({\left( {\frac{1}{7}} \right)^{100}}\)在小數點後第__________位開始出現不為0的數字。
    (2) \({\left( {\frac{1}{7}} \right)^{100}}\)在小數點後第一個不為0的數字為__________。
  1. 某銀行年利率為4%,每半年一期,現在小強存入10000元,則:
    (1) 以單利計算,五年後本利和共__________元。
    (2) 以複利計算,五年後本利和共__________元。
    (已知\(\log 1.0 = 0.0086\),\(\log 1.219 = 0.086\))

Ans:

1. (2)

2. (1) 15 (2) 24 (3) 2

3. (2)

4. (1) 4 (2) \(\frac{7}{2}\)

5. 3

6. \(\frac{2}{3}\)

7. 27

8. 2

9. 3

10. (3)(5)

11. \( - 7 \le x < - 4\)或\(2 < x \le 5\)

12. \(A\)、\(B\)、\(D\)、\(C\)

13. 0.77352

14. (1) \( - 5\),0.4622 (2) 5

15. (1) 85 (2) 3

16. (1) 12000 (2) 12190

 

pdf檔請至資源分享中下載,謝謝

Log in to comment

Share this post

Submit to FacebookSubmit to Google PlusSubmit to Twitter